Friday, November 9, 2007
Syslog-NG Performance Tuning
I figured I would post some general tuning options that really improve performance on busy central syslog-ng servers. The following settings are used in 2.x, although most will work in some earlier versions as well. These settings work well for me in a tiered environment where client servers are sending both over tcp and udp, from standard syslog and syslog-ng, to a central server(s) running syslog-ng 2.0.5. They are both used in heavy usage (25+ GB / day) situations, and in environments with plenty of hosts (900+).
On to the configuration choices for your central log servers...
Name Resolution
You most likely will want to resolve the IP addresses of client hosts to their hostnames, so enabling name lookups via use_dns(yes) is probably turned on. However, you should ensure you are using your cache properly. Adding dns_cache(1500) and dns_cache_expire(86400), both allow a cache of 1500 entries and set the expiration of entries in the cache to 24 hours. Keep in mind, to allow for enough entries, and account for how often your hosts change IP addresses - such as in dynamic dns environments, etc. These numbers here are just given as an example, tailor to your situation.
If you would rather use the hosts file instead, look into use_dns(persist_only) and dns_cache_hosts(/etc/hosts).
Message Size
Not so much a performance tuning option, but one that needs addressing anyhow. If you are only collecting system logs, the default setting of 8192 bytes is probably enough - but if you collect application logs, you will need to plan accordingly with your log_msg_size(#) option. You will see in your logs, indications of messages being split because they are too long if you have messages going beyond this length.
Output Buffers
Here is an extremely important setting - log_fifo_size(#). The log_fifo_size(#) setting sizes the output buffer, which every destination has. The output buffer must be large enough to store the incoming messages of every source. This setting can be set globally or per destination.
For the log_fifo_size(#), the number indicated is the number of lines/entries/messages that it can hold. By default, it is globally set, extremely conservatively - and if you do any amount of traffic, you will end up seeing dropped messages at some point. The statistics that include dropped messages are printed to syslog every 10 minutes unless you have altered this. In the statistics line it will let you know which destination is dropping messages and how many. You can then make determinations there of whether to globally increase it or per destination, and also an idea of how much larger you need to make it.
Flushing Buffers with sync
From the syslog-ng documentation: "The syslog-ng application buffers the log messages to be sent in an output queue. The sync() parameter specifies the number of messages held in this buffer."
By default, sync(#) is set to 0, which flushes messages immediately - which depending on your logging volume, can be fairly taxing. Increasing this number gently, say to 10 or 20, will hold that number of messages in its buffer before they are written to their destination.
Other Important Considerations
If you are still having trouble with dropped messages, look into using flow control within syslog-ng. Flow control allows you to finely tune the amount of messages received from a source. Although, there are potential other issues you must account for, such as slowing down the source application if it cannot hand off its log messages, etc.
Users with traditional syslog clients sending their logs via UDP, should have a look at this page on UDP Buffer Sizing.
Also, sync() and log_fifo_size() should be tweaked on your client servers as necessary if they are using syslog-ng, and handle heavy loads, sporadic sources, etc. Remember to use your statistics log entries to help you identify problems and load effectively.
Thursday, November 1, 2007
Learning with Honeypots
Honeypot Layout
I've recently rented some dedicated server and public IP resources for running some honeypot/honeynet/whatever setups, more or less to learn, figured I would post my game plan here.
My basic idea is not earth shattering or anything new, I just hope to gain new insight, see what works or doesn't work, and find ways of using honeypots for intrusion detection or as an early warning system for a piece of the overall security monitoring puzzle.
As we all know, any traffic hitting a honeypot system is suspicious, or not warranted at best, it whittles down the amount of traffic we have to look at compared to a production host. However, if you have ever looked at logs or traffic of a publicly accessible, non-production machine, this "whittled down" traffic can still be quite large. Both from things such as worms propagating to your annoying SSH brute force scans. So how do we both look for the unkown nasties while not wasting time on the redundant, now passe, routine malicious scans and such? One way is by filtering and tiering our honeypot architecture.
Filtering, Tiering and Multiple Tools
Fortunately, there are many great tools out there for honeypots and analysis:
honeyd: http://www.honeyd.org/
nepenthes: http://nepenthes.mwcollect.org/
honeyc: https://www.client-honeynet.org/honeyc.html
Capture-HPC: https://www.client-honeynet.org/creleases.html
Honeywall: http://www.honeynet.org/tools/cdrom/
Combined with your standard monitoring and access control tools such as snort, tshark and iptables - and you come away with many ways to both watch, contain and direct how things happen.
I have planned to heavily use VMware for the virtualization aspects of both the high interaction honeypots and some of the low interaction honeypots. Tiering between filters to low interaction honeypots, then to high interaction honeypots - reduces the load and increases the matching of known misuse early on with the least amount of resources squandered.
The Plan
So, here's what I intend to do as a starting point.
An initial box will run VMware, IPtables, and monitoring software (such as tshark/argus/snort or possibly sguil). This box will pass pre-defined traffic after being filtered to a set of IP addresses exposed to an instance of honeyd.
This honeyd machine controls a set number of public IP addresses that I intend to bind to various templates at various times - floating between Linux, Windows and dynamic emulations based on honeyd's passive fingerprinting capabilities provided by p0f signatures and other abilities (how about blacklisted source IPs for instance).
At this point, honeyd will offer some custom service emulation scripts, watch for probes and pokes on various tcp and udp ports defined, and then with the help of some perl glue, make a determination what do with it. The "what to do with it" part, will be either to drop it on the floor, pass it to nepenthes, or sending it to a high interaction honeypot (a Windows one if it is most likely a Windows exploit, a Linux one if it is most likely a Linux exploit, etc.).
The virtual machines running nepenthes and the high interaction honeypots, will be on a NAT'ed network, funneled through the public IP space offered up by the front-end of this setup. Nepenthes will provide a second-line of defense, noticing worms and malware that are already known. If nepenthes does not recognize the traffic, or if the initial honeyd setup determines that these should go elsewhere, the traffic will be destined for an appropriate virtual machine running an OS most likely to match the intended target, or potentially to an emulated service.
In addition, custom perl scripts will handle SMTP service emulation, to both capture and analyze spam and the resulting links and attachments they contain. Tarpitting and utilizing client honeypot tools to visit the linked websites, is on the agenda as well.
Things to Watch For
So many things come to mind as needing that extra care and attention, or that will just be plain fun to mess around with. Here's my list:
* Routing the traffic. Both the honeyd aspect, and the perl glue that will be used to make other determinations, etc.
* Automation. How to maintain my sanity while still providing a valuable learning environment.
* Control. As with any honeypot setup, maintaining control of the various aspects as things are exploited and probed.
* Keeping the various parts of this setup from being fingerprinted and identified as "not real".
* Building a database of everything learned, and providing a usable interface to this data.
Final Thoughts
I intend for this post to be a starting point for what I learn works or doesn't work, interesting tidbits found, etc. Both documenting things I'd like to keep tabs on and sharing with other interested parties. As always, comments and thoughts are welcome.
Much of the ideas and technical know-how came from the recent, and excellent, book on Virtual Honeypots, I highly recommend you check it out.
I've recently rented some dedicated server and public IP resources for running some honeypot/honeynet/whatever setups, more or less to learn, figured I would post my game plan here.
My basic idea is not earth shattering or anything new, I just hope to gain new insight, see what works or doesn't work, and find ways of using honeypots for intrusion detection or as an early warning system for a piece of the overall security monitoring puzzle.
As we all know, any traffic hitting a honeypot system is suspicious, or not warranted at best, it whittles down the amount of traffic we have to look at compared to a production host. However, if you have ever looked at logs or traffic of a publicly accessible, non-production machine, this "whittled down" traffic can still be quite large. Both from things such as worms propagating to your annoying SSH brute force scans. So how do we both look for the unkown nasties while not wasting time on the redundant, now passe, routine malicious scans and such? One way is by filtering and tiering our honeypot architecture.
Filtering, Tiering and Multiple Tools
Fortunately, there are many great tools out there for honeypots and analysis:
honeyd: http://www.honeyd.org/
nepenthes: http://nepenthes.mwcollect.org/
honeyc: https://www.client-honeynet.org/honeyc.html
Capture-HPC: https://www.client-honeynet.org/creleases.html
Honeywall: http://www.honeynet.org/tools/cdrom/
Combined with your standard monitoring and access control tools such as snort, tshark and iptables - and you come away with many ways to both watch, contain and direct how things happen.
I have planned to heavily use VMware for the virtualization aspects of both the high interaction honeypots and some of the low interaction honeypots. Tiering between filters to low interaction honeypots, then to high interaction honeypots - reduces the load and increases the matching of known misuse early on with the least amount of resources squandered.
The Plan
So, here's what I intend to do as a starting point.
An initial box will run VMware, IPtables, and monitoring software (such as tshark/argus/snort or possibly sguil). This box will pass pre-defined traffic after being filtered to a set of IP addresses exposed to an instance of honeyd.
This honeyd machine controls a set number of public IP addresses that I intend to bind to various templates at various times - floating between Linux, Windows and dynamic emulations based on honeyd's passive fingerprinting capabilities provided by p0f signatures and other abilities (how about blacklisted source IPs for instance).
At this point, honeyd will offer some custom service emulation scripts, watch for probes and pokes on various tcp and udp ports defined, and then with the help of some perl glue, make a determination what do with it. The "what to do with it" part, will be either to drop it on the floor, pass it to nepenthes, or sending it to a high interaction honeypot (a Windows one if it is most likely a Windows exploit, a Linux one if it is most likely a Linux exploit, etc.).
The virtual machines running nepenthes and the high interaction honeypots, will be on a NAT'ed network, funneled through the public IP space offered up by the front-end of this setup. Nepenthes will provide a second-line of defense, noticing worms and malware that are already known. If nepenthes does not recognize the traffic, or if the initial honeyd setup determines that these should go elsewhere, the traffic will be destined for an appropriate virtual machine running an OS most likely to match the intended target, or potentially to an emulated service.
In addition, custom perl scripts will handle SMTP service emulation, to both capture and analyze spam and the resulting links and attachments they contain. Tarpitting and utilizing client honeypot tools to visit the linked websites, is on the agenda as well.
Things to Watch For
So many things come to mind as needing that extra care and attention, or that will just be plain fun to mess around with. Here's my list:
* Routing the traffic. Both the honeyd aspect, and the perl glue that will be used to make other determinations, etc.
* Automation. How to maintain my sanity while still providing a valuable learning environment.
* Control. As with any honeypot setup, maintaining control of the various aspects as things are exploited and probed.
* Keeping the various parts of this setup from being fingerprinted and identified as "not real".
* Building a database of everything learned, and providing a usable interface to this data.
Final Thoughts
I intend for this post to be a starting point for what I learn works or doesn't work, interesting tidbits found, etc. Both documenting things I'd like to keep tabs on and sharing with other interested parties. As always, comments and thoughts are welcome.
Much of the ideas and technical know-how came from the recent, and excellent, book on Virtual Honeypots, I highly recommend you check it out.
Subscribe to:
Posts (Atom)
Basic Pig usage to process Argus data
Some quick notes on testing out Pig in local mode to process some basic Argus data. Argus Capture a sampling of network traffic with Argus a...
-
Some quick notes on testing out Pig in local mode to process some basic Argus data. Argus Capture a sampling of network traffic with Argus a...
-
I figured I would post some general tuning options that really improve performance on busy central syslog-ng servers. The following setting...
-
The hybrid IDS, or "meta-IDS", as described by the project's founder, makes an excellent choice as a SIM/Event Management tool...